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Abstract—Safety evaluation of medicines and vaccines is criti-
cal to ensure patient safety and maintain confidence in treatment
and disease prevention strategies. Leveraging data pathways for
next generation pharmacovigilance (PV) requires the creation
of new platforms that seamlessly integrate both structured and
unstructured data. Here, we describe the design of a novel data
environment that provides enhanced data mining, information
retrieval, and data governance to improve PV processes and
activities. The goal of which is to further inform the knowledge
of potential safety issues during the life cycle of medicines, from
routine healthcare delivery to informing future drug and vaccine
development.

Index Terms—pharmacovigilance, drug safety, vaccine safety,
heterogeneous data, machine learning

I. INTRODUCTION

Pharmacovigilance (PV) is the systematic and continuous
evaluation of the safety of medicines and vaccines adminis-
tered to humans during routine healthcare delivery. And, PV
is paramount to ensure patient safety and to maximize our
understanding from emerging issues during drug development
and routine use in healthcare.

Diverse and increasingly vast amounts of healthcare-related
data are transforming our approach to PV. Sophisticated data
mining technologies, artificial intelligence (AI) and machine
learning (ML) are increasingly capable of rendering large
quantities of heterogeneous data into information that can be
used to guide clinical decision making and drug development,
and to help identify potential safety signals. PV has primarily
focused on traditional data, such as spontaneously reported
safety events of suspected adverse events (AEs). Including het-
erogeneous data requires a multi-modal approach to improve
causality understanding and reveal potential safety issues rel-
evant at the population level and for specific subgroups.

II. SYSTEM DESIGN

Fig. 1 illustrates a design that supports multi-modal data
and includes data that are typically not well structured, but
still contribute to the overall data ecosphere. Combining com-
plementary data sources requires the development of novel
processing methods and optimization for their use in PV.

Our design is a multi-modal safety data system and cre-
ates an infrastructure that will transform PV systems into a
fully connected, modern platform. The figure illustrates that
the foundations of patient data pathways are composed of

Fig. 1. Data pathways for next generation pharmacovigilance

multiple data sources (both traditional and non-traditional).
Ontologies and knowledge graphs enable linking disparate data
sets together allowing them to be utilized by more advanced
modeling tools.

This design also considers data access levels (summary
versus patient level), privacy regulations, and the ability to link
data together in meaningful ways. By enabling diverse data
pathways, we have designed a modular system that is capable
of efficiently dealing with issues as required (e.g. de-linking
of data). Further, it supports data visualization to enable the
rapid assessment and the ability to flag data issues (e.g. likely
inferential safety concerns).



III. A MODERN DATA INFRASTRUCTURE FOR
PHARMACOVIGILANCE

One of the strongest motivators for designing a new PV data
infrastructure is the simple fact that traditional PV has relied
primarily on association rules analysis for signal detection
[1]. Most signal detection has therefore sought to improve
upon these basic proportionality tests [2] [3] that do not fully
take into account the diversity of disease, demographics and
patient backgrounds. The low quality of data in safety reports
may limit their usefulness, therefore making clinical review of
quantitative outputs critical.

Furthermore, the language in which we express AEs in
safety reports has its own constraints. Safety databases rely ex-
tensively on regulatory reporting requirements which mandate
that medical events be expressed using the Medical Dictionary
for Regulatory Affairs (MedDRA) [4]. The use of MedDRA
has proven useful historically, particularly as a structured
way for recording data as compared to free text. However,
it is not without limitations. For example, MedDRA terms
referencing genetic AEs are lacking, potential outcomes from
immunotherapies have only been slowly adopted [5], and as an
ontology, MedDRA is often misunderstood by the complexity
of its underlying hierarchical structure [6]. Similarly, there are
challenges with how drug or vaccines exposures are recorded
and grouped together most effectively for analysis [7].

As we enable extended data pathways, attention has been
given to the wider incorporation of systems biology, environ-
mental conditions and disease pathways. These data linkages
enable better approximations for identifying whether the data
supports a causal link between medicines/vaccines and an AE,
and represents a true paradigm shift from the historical, routine
analysis of safety signals in medicines.

IV. FOUNDATIONS FOR ENABLING DATA PATHWAYS

A. Revealing the Layers of Data Accessibility
The first step in building our data environment is to focus on

the various types of data that contribute to data pathways. To
achieve this, our design must be agile in its ability to integrate
each layer. The data sources can be viewed through the lens
of data access and availability which include (1) centralized,
in-house data, (2) remote access databases, (3) “ad hoc” use
databases and (4) medical literature. Applying appropriate
inference methods requires excellent understanding of each
data source. Patient level data is anonymized to ensure data
privacy is met, and each data source may also contain pertinent
meta-data (e.g. data refresh dates, governance restrictions).

Historically, PV primarily focused on centralized, in-house
data (e.g. safety reports, preclinical and clinical trials, pharma-
cology and in vitro models), and centralized data still covers a
majority of PV needs. In recent years, PV has utilized remote
access databases which mainly include real world data (RWD)
with additional benefits. Occasionally, “ad hoc” use databases
may be required which originate from various sources. These
may or may not be used in day-to-day PV-related activities, but
may be called upon as needed for more specific and detailed
analysis, particularly of a suspected AE.

B. Centralized and In-house Data

1) Safety Adverse Event Reports: Postmarketing PV tra-
ditionally relies on the analysis of safety reports. Safety
reporting is highly contextual and subject to bias, e.g. being
more frequent when (1) a drug first enters the market, (2) the
AE is perceived as serious, (3) the reporting environment is
favorable, (4) attention is drawn to specific AEs by govern-
ments, media reports, or by litigation [8].

The absence of denominator data means that databases of
safety reports cannot be used to estimate population-based
incidence rates. Although linkage to drug utilization sources
is sometimes done and can enable reporting rate estimation,
this adds complexity to the analysis and is not an exact
science (e.g. prescriptions are often left unfilled [9]). Duplicate
reports and missing data are inherent problems that impact
case counts. Missing data can render some voluntary reports
uninterpretable in terms of diagnosis or causality assessment,
and follow-up attempts for individual cases are often time-
consuming and fruitless. Despite these limitations, postmar-
keting PV has been instrumental in identifying important or
unexpected adverse reactions to vaccines and medicines that
have led to label changes or, rarely, withdrawal of the product
itself from the market [10].

2) External Safety Data Sources: Pharmaceutical compa-
nies collect, analyze, and share safety reports on their own
products, but this approach to PV alone would certainly lead
to a myopic view of the world. To support data pathways of
relevance to PV activities, it is also necessary to incorporate
all safety data that could potentially help link and connect
suspected AEs within a broader context. To support this ca-
pability, our data pathways also make use of data sources that
are well known in the PV community and readily accessible
such as WHO1 which is the global database of reported AEs
for medicinal products.

C. Remote Access Databases

1) Real-world data: “Real-world evidence (RWE) is the
clinical evidence regarding the usage and potential benefits
or risks of a medical product derived from analysis of Real-
World Data (RWD). RWE can be generated by different study
designs or analyses, including but not limited to, randomized
trials, including large simple trials, pragmatic trials, and ob-
servational studies (prospective and/or retrospective)” [11].

The term RWD is often used to denote specifically large,
electronic healthcare records (EHR) or claims databases orig-
inating from multiple countries. These are rich sources of
data containing millions of patient-level records suitable for
longitudinal studies [12]. This type of data has long been
used for epidemiological studies (which traditionally took
years to execute – particularly when multiple databases were
employed).

Now, RWD is increasingly used to investigate the natural
history of disease, treatment patterns and outcomes, and spe-
cific AEs in relation to a drug or vaccine exposure. However,

1https://who-umc.org/vigibase/



use of these databases for signal detection in PV is still
evolving and its value remains unclear (e.g. hypothesis-free
signal detection). They also provide data not readily accessible
through safety reports alone (i.e. determining incident rates of
exposure, comparator drugs, demographics).

Limitations of RWD include data lag (typically 3–6 months)
and biases based on database demographics. Additionally,
RWD requires multiple analytical methods for different drug-
event groupings. For example, capturing acute outcomes that
occur shortly after exposure has different requirements than
capturing deaths or diseases such as cancer that can take many
years to develop [13].

2) Common Data Models: The use of common data models
(CDMs) has made significant contributions to PV over the
last 15 years. Development of data agnostic CDMs enabled
one to perform comparable analyses across data sources by
transforming the underlying data into a standardized format.
RWD are typically not built for PV and CDMs are instrumental
in transforming these data sources into a common format,
enabling rapid data analysis and signal identification [14].

Our data environment can use RWD originating from coun-
tries such as the USA, UK, and Japan. These data sources are
in routine use (Fig. 2), and our environment supports rapid
inclusion of additional sources (i.e. those that are grayed out)
which may be activated, near instantaneously, as needed in
support of PV activities.

Currently lacking in the PV landscape is a harmonized, data
format (native or CDM) agnostic, multi-stakeholder strategy
that takes advantage of data systems as they emerge and
evolve. For example, safety surveillance in resource-limited
countries is frequently undeveloped or absent, representing a
significant gap in terms of population representation in safety
databases. To date, targeted strategies have been implemented
to mitigate and encourage safety surveillance processes. How-
ever, these strategies are often specific to certain localities or
outcomes [15].

D. Ad hoc Databases

1) Social Media Pipeline: Social media (SM) offers a
non-traditional, worldwide data source that may be leveraged
for PV activities. These data are readily accessible through
aggregators or directly from the source (e.g. Twitter, reddit).
In addition, SM data often contains geographic specificity, and
provides direct access to the voice of the patient. There are
also disadvantages including, not all data is accessible (e.g.
Facebook restricts access at the aggregate level). The same
AE may be duplicated on different forums. Further, SM users
do not use standard drug names nor medical terminology
of diseases and symptoms. It also contains high levels of
noise (e.g. spam). Currently, SM data is not systematically
used in PV and has been shown to perform poorly [16] [17].
However, it has been shown that analysis of SM data can have
meaningful impacts on safety monitoring for some specific
safety issues, such as enabling insights for patient engagement
[18].

Fig. 2. Accessible and available real world data sources

We created an SM data processing pipeline as a module of
our data pathway integration (Fig. 3). This pipeline is agnostic
of channel source, automates the processing of unstructured
posts using natural language processing (NLP), and defines a
formal data structure that can be used for routine monitoring
of suspected AEs.

SM data can be transformed into a format suitable for PV
activities by following the data processing steps. (1) Standard-
ization of drug names and mapping AEs to MedDRA; (2) data
cleaning to remove duplicates, noise and spam using Bayesian
probabilistic models (3) de-identification by removing person-
ally identifying information. Once processed, the data is made
available as part of our data pathways environment.

2) Systems biology and biobanks: Biomedical databases
(biobanks) contain detailed genomic and/or health-related in-
formation, including medical imaging results, health outcomes
and biological samples. Large population-based biobanks exist
in several countries (e.g. Estonia, Finland, UK), but they tend
to be concentrated in affluent countries [19].

Genetic polymorphisms among individuals exists within
populations. Responses to medicines or vaccines, or even
the risk of developing an adverse reaction to that product,
are potentially variable among individuals receiving the same
product due to genetic differences. Biobanks offer an oppor-
tunity to better understand why individuals may vary in their
responses to a medicine or vaccine, and they offer the ability
to define specific safety monitoring protocols for patients
with higher risk. In-depth safety profiles may be generated
by harnessing multifaceted datasets to help predict biological
processes which may impact safety.

The SARS-CoV-2 pandemic has underscored the intimate
connection between genetics, environmental data and disease,
and their influences on holistic systems biology. For instance,
the emergence of the COVID-19 virus uncovered the value



Fig. 3. Social media data processing pipeline

of “dark data”, a term used to describe published data that
is not connected to digital knowledge resources and is there-
fore unavailable for high-throughput analysis [20]. Liberation
of dark data into digitally connected formats could expand
research capacity and promote the development of non-linear
outputs and re-use of data in relevant settings. Along the same
lines, the use of biobank data and genome-wide association
studies can provide potentially critical safety information that
could contribute to a better understanding of the effects of
drugs and vaccines on specific sub-populations; as concluded
by Nogawa, et al. [21] in evaluating AEs associated with the
COVID-19 mRNA vaccine.

3) Environment, weather and climate: Pollution levels,
water quality, environmental exposures, natural disasters, pan-
demics, weather events and climate change all impact human
health [22]. For example, during the COVID-19 lock-down,
data collected from claims and EHRs (and other data sources)
were potentially confounded, had missing data, or experienced
additional bias due to an over-extended global healthcare
system. Real-time monitoring of pollution and weather data
can provide detailed information on these risks down to the
level of a zip code. Such data can be used to complement
safety signal detection and causality modeling.

Signal detection in PV does not tend to make any adjust-
ments for where the patient is located and how various envi-
ronmental conditions may affect their personal health journey.
An individual’s mortality is largely affected by where they
grew up, the level of education achieved, and access to healthy
food and proper healthcare [23]. Phelos et al. investigated
nearly half a million trauma patients’ lives and found that
when vulnerability indices (i.e. Distressed Community Index2

and National Risk Index3) were taken into account, these
factors alone could account for determining outlier status due
to geographic variation [24]. This can also help to account
for variations in physical biomarkers, and when combined

2https://eig.org/distressed-communities/
3https://hazards.fema.gov/nri/

with emerging digital health technologies, could be leveraged
to enhance the identification of AEs and potential causal
associations [25].

E. Medical Literature

In PV, the published medical literature serves multiple
purposes, including (1) a direct source of safety data (e.g.
safety reports, meta-analyses), (2) a reference when seeking to
understand the mechanism underlying potential safety signals,
and (3) provide background for benefit-risk review. Ad hoc
searches on specific topics may also be requested by internal
or external parties during signal investigation.

Generally, literature searches are carried out using platforms
such as PubMED or EMBASE and titles are manually screened
to identify potential articles of interest. As the number of
relevant articles increases, particularly for legacy products,
literature searches can become arduous and time-consuming.
Manual reviews are also prone to error and individual reviewer
bias. Narrowing search terms may decrease search results but
comes with the potential loss of information. Other texts, such
as media reports and gray literature, should also be searched,
but they may be overlooked or missed altogether. ML and
NLP techniques provide the ability to deal with large volumes
of text and can improve the speed and accuracy of literature
searches [26].

V. INNOVATIVE APPROACHES TO DATA PROCESSING

Leveraging data pathways requires thinking more criti-
cally about systems management. Data linkage and retrieval
must follow regulatory guidance and respect patients’ rights,
most notably, under the General Data Protection Regulation
(GDPR). In addition, our data infrastructure platform aims to
commit to FAIR (Findability, Accessibility, Interoperability,
and Reusability) practices [27].

A. Data Processing and Accountability

On April 27, 2016, the European Parliament codified into
law “the right to be forgotten”, or what is now referred to as



the GDPR [28]. These types of edicts have now become law
in other jurisdictions, although with potentially more limited
applicability. Still, these types of data removal requests have
real impacts in the global data ecosphere [29] [30] and must be
taken into account in the context of a drug monitoring system.
Our PV platform must include the ability to trace and audit
changes in data. It must track and manage how the loss of data
impacts both prior and ongoing PV studies, and it should alert
users to when and where they can move data in accordance
with regulatory requirements.

B. Data Enrichment

Data enrichment is the process of utilizing ontologies and
knowledge graphs to add more value to data than exists in
isolation. We have seen great success in the use of these
methods in the annotation of human genetic data and the drug
discovery process [31].

Eventually, we would also like to link PV data sources
to biological pathways via the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [32]. Andersen, et al. suggested that
gene expression can affect a patient’s potential AE outcomes
in their study on lymphatic filariasis, a neglected tropical
disease [33]. The authors found a significant transcriptional
signature associated with post-treatment AEs; 744 genes were
up-regulated.

Our modern PV system infrastructure will connect data
traditionally not used in routine safety analysis to help further
these types of studies through data enrichment of biobank and
genetic data.

C. Process Simplification

Data used in PV has always gone through careful review
and analysis. Traditionally, there have been near-equal efforts
to test and enrich the data. The promise of ML and related
technologies is to reduce the manual efforts required and
allow for even more focused effort on specific data activities
that will most effectively increase knowledge of the safety
characteristics of drugs and vaccines [34].

VI. ENABLING TECHNOLOGIES AND EMERGING MODELS

A. Process automation of rules-based systems

There are many tasks that are mundane and routine in
the process of evaluating safety data. By leveraging our data
pathways strategy, one can readily adapt automation of these
steps and implement them more quickly than with traditional
PV systems infrastructure. While rules-based systems may be
considered one of the simpler forms of machine intelligence,
there is still much value to be gained from these processes
[35].

In March 2020, two new, automated, rules-based processes
were released [36]. The first process checks for duplicate re-
ports using predefined sequences, while the second reviews the
quality of the data of an incoming safety report by extracting
relevant field content and looking for field discrepancies using
predefined rules. These methods were shown to significantly
reduce the time spent to manually review cases. Over 30,000

safety reports were processed in a single week and it is
estimated that the same volume of cases would have required
approximately 5,000 person hours to review by hand.

B. Molecular clinical safety intelligence

Safety concerns are common reasons why medicines fail
during clinical development. Safety experience with like drugs
can inform new drug development and help predict the human
safety profile of new drug candidates.

A software tool was developed that warehouses the chemical
structures and biological properties of approximately 80,000
compounds to enable molecular clinical safety intelligence.
The system enables the analysis of in vitro, preclinical, drug
metabolism, toxicology, and clinical data to assess the risk of
potential toxicity of new candidate drugs [37]. Safety-driven
drug design can promote selection of the safest drug candidates
for further development.

Tools like these can be accessed to enhance our overall
data pathway capabilities. Increasingly, such capability is now
obtainable, the outputs of which can then be linked to enhance
safety data pathways [38].

C. Data Mining and Machine Learning

In 2011, the FDA Adverse Event Reporting System
(FAERS) received more than half a million safety reports
[39]. The number of reports filed each year has been growing
steadily. In 2021, FAERS recorded over 2.3 million safety
reports.

Monitoring of medicines and vaccines is a complex process
that cannot be fully automated through rules-based approaches.
Much of the activity around processing safety reports is of
questionable value in terms of furthering knowledge about
patient safety. This motivates the use of more advanced
techniques to automate and improve the efficacy of human
intervention and manual review of cases. However, in the
context of safety report processing, we must be capable of
seamlessly supporting both rules-based and ML methods.

The main challenge associated with using ML in safety
within this context is developing the safety-specific training
data sets needed to “teach” the ML algorithms, that must
be dynamic and able to capture changes to the safety envi-
ronment. The development of training sets is labor-intensive,
requiring review of complex safety reports and large amounts
of free text to identify and extract relevant variables. The
burden of creating better training sets may be alleviated
through methods like crowdsourcing.

Additionally, any step in the ML process should clarify how
the methods are performing, provide confidence scores, and
allow for human intervention when things go wrong [40]. In
particular, ML may assist PV-related activities by identifying
potential black swan events [41], duplicate case reporting [42],
data anomalies or errors, and finding duplicate information
in different data sources. Modern PV systems should enable
continuous learning from agile data sources, deal with data
drift, and allow for course correction when things go wrong.



D. Natural Language processing for automated prioritization
of safety literature review

The goal of NLP is for computers to understand the contents
of documents. NLP is increasingly being used in PV to glean
knowledge from unstructured data (e.g. showing how early
identification of acute liver disease from EHRs is possible
based on supplementing structure data with NLP extracted
concepts from clinical notes [43]).

One hundred percent of the manual review of literature for
potential AE cases can be supplanted by NLP to prioritize
candidate articles and identify safety reports as shown by
Glaser et al. [44]. NLP methods were used to automate and
rank literature documents, resulting in a 77% reduction in
time in queue for review. All documents identified as relevant
were identified in the test dataset, creating tangible gains
in efficiency while demonstrating that NLP is can automate
the identification of potential AE cases in large volumes of
literature.

E. Rapid Query Analysis of Real-Word Data

Rapid query analysis (RQA) methods allow population-
based contextualization of outcomes of interest. One example
of its use is examining rates of outcomes in an exposed
population during specified risk intervals and comparing those
rates to those that occur during comparable intervals or in
unexposed populations. The results of RQA, however, require
further analysis and investigation due to their exploratory
nature. RQA can be performed in near real-time, and it may be
triggered by emerging internal or external PV-related requests.
Various software tools exist to enable RQA of RWD to
contextualize observed events [45]. This provides a rapid query
capability similar to the FDA’s Sentinel network (keeping in
mind the limitations of RWD).

This is now a routine capability providing more descriptive
and complex analytical analyses across multiple healthcare
databases quickly from analysis initiation to results [46].

VII. MULTI-MODAL SAFETY MONITORING

PV is moving toward a multi-modal model system to lever-
age the plethora of available data sources and the increasingly
sophisticated capabilities of data mining and ML. Multi-modal
PV will drive improved data-driven insights into drug and
vaccine safety. The data generated by an individual over their
lifetime is stored in many platforms and in many forms;
and biological & genomic information, medical encounters,
diagnoses, procedures, prescriptions and health outcomes may
be stored as structured data. While free text associated with
these episodes, results of tests and real-time monitoring, and
SM posts are stored as unstructured data.

All the building blocks of multi-modal modern PV systems
are currently available as individual modules. Linkage across
the components is primarily ad hoc and the next phase is to
make this more integrated from a user perspective, recognizing
that original underlying data will necessarily need to remain
fragmented and decentralized.

In summary, the multi-modal systems model provides for
increased transparency and efficiency in governance by creat-
ing audit trails. It maximizes our ability to interact, analyze
and enable data-driven decision making. Finally, the multi-
modal system allows for iterative learning from data outputs
to inputs.

VIII. CONCLUSION

By leveraging data pathways, we have described that a next
generation, modern PV system benefits from the enhanced
linkage of disparate data. The data environment encompasses
both traditional and non-traditional data, linking millions of
patient lives and data points together to better understand the
complexities of patient safety.

This system provides a more holistic approach in both
population and personalized patient safety, and enables a
higher level of confidence in causality modeling of suspect
drug and vaccine event outcomes.

Allowing for more flexibility in the data processing, clean-
ing and automation of routine safety monitoring processes
should foster faster development of advanced safety surveil-
lance methods and encourage more experimentation in the use
of advanced data mining and AI/ML methodologies.
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