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Summary 

We developed a novel tool for microarray data analysis that can parsimoniously discover 
highly predictive genes by finding the optimal trade off between fold change and t-test p 
value through rigorous cross validation. In addition to find a small set of highly 
predictive genes, the tool also has a procedure that recursively discovers and removes 
predictive genes from the dataset until no such genes can be found. We applied our tool 
to a public breast cancer dataset with the goal to discover genes that can predict patient’s 
response to a preoperative chemotherapy. The results show that estrogen receptor (ER) 
gene is the most important gene to predict chemotherapeutic response and no gene 
signatures can add much clinical benefit for the whole patient population. We further 
identified a clinically homogenous subgroup of patients (ER-negative, PR-negative and 
HER2-negative) whose response to the chemotherapy can be reasonably predicted. Many 
of the discovered predictive markers for this subgroup of patients were successfully 
validated using a blinded validation set. 

1 Introduction  

Feature selection is one of the most important topics in microarray data analysis. The goal of 
feature selection is to find informative genes in high dimensional data from a set of examples 
with known clinical outcome. Feature selection serves two distinct purposes: (a) identify a 
parsimonious set of genes that yield a predictive model with good performance in 
independent cases; (b) identify all significantly differentially expressed genes between two 
outcome groups in order to gain insight into biological processes which differentiate the 
groups by making use of pathway analysis or gene ontology analysis tools.  

In many microarray data analysis algorithms, features need to be ranked using a certain 
statistic, either before or inside the classifier learning process. For features that follow a 
normal distribution, a classical t-test is an excellent choice for ranking. However, in many 
datasets, predictive features are far from being normally distributed. For example, many 
oncogenes only show large elevation in a small portion of the samples of one phenotype. 
Feature selection using t-test cannot pick up such genes if stringent p value is used. For such 
features a simple fold change or mean difference test is a better choice than a classical t-test. 
For this reason, various modified t-tests, e.g., SAM [1], Efron-t (equation (2.8) of [2]), 
“shrinkage-t” [3], have been proposed for feature selection in high dimensional array data, 
primarily to balance the trade-off between a mean difference test and a t-test in order to 
efficiently detect different types of predictive features. 
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To address these issues, we have developed a Java based data analysis tool which selects 
features by searching for the desired thresholds of both mean difference test and t-test p 
value. For any pair of thresholds, the features that satisfy both thresholds are used to build a 
diagonal linear discriminate analysis (DLDA) classifier [4], which is a simple linear classifier 
similar to weighted voting [5]. By varying the thresholds of these two statistics in certain 
steps within their acceptable ranges, we can achieve various trade-offs and control the size of 
the feature sets.  The pair of the thresholds of the two statistics solely determines the feature 
set and thus the DLDA model, as there is no parameter to be tuned for DLDA modelling. The 
tool can automatically find the optimal balance based on cross-validated model performance 
and generate an optimal model.  In a sense, our tool can be viewed as a generalization of 
various modified t-tests – instead of using a fixed trade-off, the proposed adaptive method 
will automatically discover optimal trade-offs for a given dataset. 

As different types of biomarker signals can coexist in the same data set, an iterative wrapper 
procedure was developed to enable the discovery of more features by finding a number of 
effective trade-offs between the two statistics.  

To demonstrate the clinical value of the proposed method, we performed detailed analyses on 
a publicly available breast cancer chemotherapeutic response dataset [6].The results show that 
our tool is very effective in identifying predictive features. The majority of the identified 
biomarkers from a clinically homogeneous subpopulation were successfully validated using 
an independent set of patients. 

2 Methods 

Our Java tool has three main functions. 

The procedure ‘findGeneSignature’ uses a grid search procedure that searches through 
various trade-offs of mean difference test and t-test. A prediction model is generated using the 
optimal trade-off in terms of cross-validated model performance. In our tool, we use area of 
the ROC (receiver operating characteristic) curve (AUC) to measure model performance. 

A nested cross-validation (CV) procedure called ‘estimatePerformance’ is used to estimate 
model performance.  In this procedure, procedure ‘findGeneSignature’ is called to tune the 
parameters using the inner cross-validation.  The outer cross-validation is used to estimate 
model performance. 

The procedure ‘findImportantGenes’ is developed to find more important genes for pathway 
analysis. It is a wrapper procedure that iteratively collects generated gene signatures and 
removes those genes from further runs.  This process continues until procedure 
‘estimatePerformance’ returns close to random performance (i.e., most informative genes 
have been identified and removed).  

High level pseudo code is listed as follows. 
Procedure trainModel (training data, a pair of thresholds for mean difference test and t-test 
respectively) { 

1. Collect mean difference and t-test p value for each gene based on training data 
2. Using both statistics to filter genes according to the thresholds. 
3. Build DLDA model using the genes that passed the filtering process. 
4. Return DLDA model 

} 
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Procedure testModel (test data, model) { 

 Use the DLDA model to return continuous scores for test cases 

} 

 

Procedure findGeneSignature (training data, ranges and steps of thresholds for statistic A and 
statistic B) { 

1. For each combination of the two thresholds, call (repeated) cross-validation procedure to get 
averaged performance and averaged size of feature set. Procedure trainModel and 
procedure testModel are called repeatedly within the cross-validation procedure 

2. Select the optimal pair of thresholds based on model performance. (Users can also hand pick 
a pair of thresholds based on performance, size of feature size, and fold change etc.) 

3. Call procedure trainModel(training data, selected pair of thresholds) 

} 

 

Procedure estimatePerformance (training data) { 
1. Run (repeated) cross-validation to estimate model performance. Procedure 

findGeneSignature is called repeatedly within the cross-validation procedure using an 
internal training data. Models returned from procedure findGeneSignature are repeatedly 
evaluated by procedure testModel using internal validation data. 

2. Internal validation results are collected and the average performance is returned. 

} 

 

Procedure findImportantGenes (training data, performance threshold) { 

 While (procedure estimatePerformance (training data) > performance threshold) { 

  Call procedure findGeneSignature 

  Add the genes of the returned model to the list of important genes 

  Remove these genes from the training data 

 } 

 Return the list of important genes 
} 

3 Experimental results  

The chemotherapeutic response dataset we analyzed in this paper is publicly available from 
NCBI GEO data repository (http://www.ncbi.nlm.nih.gov/geo/; GEO accession GSE20194). 
It is one of the six datasets analyzed in the FDA led MicroArray Quality Control project 
(MAQC) [6]. The dataset contains pretreatment gene expression data (Affymetrix HG-
U133A) and clinical information from 230 patients with stage I-III breast cancer. The goal of 
this study was to develop a gene expression based model that can predict pathologic complete 
response (pCR) to a preoperative paclitaxel + 5-fluoruracil, doxorubicin, and 
cyclophosphamide (T/FAC) chemotherapy regimen. The dataset was generated at two stages. 
In the first stage, 130 samples were generated and analyzed. Additional 100 samples were 
subsequently generated to validate the findings of the first stage. The original analysis result 
from the samples of the first stage is published in [7], where a 30 probe set gene signature 
was developed. In our experiment, we follow the practice of MAQC project, that is, to use the 
first 130 samples as the training data and the additional 100 samples as the blinded validation 
data. 

Journal of Integrative Bioinformatics, 9(2):209, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-209 3

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



3.1 Biomarker discovery using the training data 

To discover the most predictive features, we applied procedure ‘findGeneSignature’, which 
resulted in a signature of 16 probe sets (13 genes), including the estrogen receptor gene 
(ESR1), which regulates cell division and DNA replication in ~60% of breast cancers, serves 
as a pathological marker for diagnosis and treatment.  In this data set ESR1 has the second 
largest fold change among the 13 genes. This analysis confirms what is already known, i.e., 
estrogen receptor (ER) status is a very important factor for predicting chemotherapy response 
in breast cancers. Interestingly, ESR1 gene is missing from the 30 probe set signature 
developed in the original publication. 

To identify more of the highly predictive genes for further functional analysis, the iterative 
procedure ‘findImportantGenes’ is applied.  It proved to be more effective to apply this 
procedure twice: one time for finding features with high average expression values in one 
class, and the second time for finding features with high average expression value in the other 
class. Figure 1 shows how the prediction performance drops after important features being 
iteratively removed. This process returned over 300 probe sets. Through pathway analysis, we 
found that most of these genes are related to ER gene. 

 
Figure 1: Decrease of nested CV performance (AUC) after removing important features 
iteratively. Procedure findImportantGenes is called twice. The first round for detecting genes 
with high average expression values in the non-pCR group (in red line). The second round for 
detecting genes with high average expression values in pCR group (in green line). The process 
stops when the nested CV performance (AUC) is below 0.60. Over 180 features were discovered 
in the first round and over 140 features were discovered in the second round. The nested CV 
performance is based on 10 times 5 fold CV for the inner CV (model tuning) and 5 times 5 fold 
CV for the outer CV (performance estimation). 

 

To see if there are any predictive biomarkers that are independent of ER status, we separated 
the dataset into an ER-positive (n=80) set and an ER-negative (n=50) set. Applying procedure 
‘findImportantGenes’ to the ER positive set returned no significant genes, which was 
probably due to the small number of pCR cases (6 out of 80) in this cohort that has made the 
analysis underpowered. Applying the same procedure to the ER-negative set only returned 
four probe sets: three probe sets for the gene hydroxyprostaglandin dehydrogenase (HPGD), a 
prostaglandin metabolizing enzyme and one probe set for the human gene AK056707 with 
unknown function. 

Nested CV Performance (AUC) after removing important features iteratively  
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By studying the pattern of HPGD expression in the 50 ER-negative samples, we found that 
the discriminating pattern is stronger in triple negative (ER-/PR-/HER2-) samples (see Figure 
2). This led us to search for other biomarkers that can predict pCR in triple negative samples 
(n=26, 13 are pCR). By applying procedure ‘findImportantGenes’, we were able to generate 
a number of significant models using the iterative procedure. In total, 70 probe sets were 
discovered. The top 31 of the 70 probe sets are listed in Table 1.  

 
Figure 2: Gene expression values of HPGD (211548_s_at) in ER-negative patients. This graph 
partitions the ER- patients into three subgroups: ER-/PR-/HER2-, ER-/PR-/HER2+ and the rest. 
Non-pCR samples are shown in red bars and pCR samples are shown in green bars.  

 

3.2 Biomarker validation using blinded validation set 

We first validate the prediction performance (AUC) of our 16 probe set signature trained 
using the whole training set. The blinded validation AUC performance is 0.74. Although the 
performance is quite satisfactory, similar performance can be achieved by using the clinical 
variable ER alone or the ESR1 gene (probe set ID: 205225_at) alone. From the results of 
different data analysis teams of the MAQC project [6], we also found that no team can 
generate models that outperform the ER gene, which means that gene signatures have little 
added benefit for predicting chemotherapeutic response if the ER-positive and ER-negative 
patients are analyzed together. 

Within the 100 blinded validation samples, 30 samples were from triple negative patients. We 
used this subset to validate the genes discovered from the 26 triple negative samples of the 
training set. The result (in the last column of Table 1) shows that 19 of the 31 probe sets have 
reasonably good predictive power individually (AUC from 0.65 to 0.85). Twelve of them 
have low or no predictive power on this validation set (AUC < 0.65), including HPGD and 
AK056707. After checking the expressions of the HPGD gene of the validation set, we found 
that mean expression level is many times smaller than that of the training samples. We 
suspect that there may be some data quality issue in the validation set. 
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Table 1 Candidate markers identified in triple negative breast cancers for predicting 
chemotherapeutic response. The probe sets that can individually achieve reasonable validation 
performance (AUC > 0.65) are listed in bold face. The genes listed in the top portion of the table 
have higher average expression values in the non-pCR group; the genes listed in the bottom 
portion of the table have higher average expression values in the pCR group.  

Gene symbol Probe set ID Description Independent 
validation 
AUC (std. 
err) 

C4A 208451_s_at complement component 4A 0.85 (0.09) 

C4A 214428_x_at complement component 4A 0.78 (0.10) 

SERHL2 217284_x_at serine hydrolase-like 2 0.77 (0.10) 

SERHL2 217276_x_at serine hydrolase-like 2 0.59 (0.12) 

COL1A2 202404_s_at collagen, type I, alpha 2 0.69 (0.11) 

COL1A2 202403_s_at collagen, type I, alpha 2 0.69 (0.11) 

CRAT 209522_s_at carnitine acetyltransferase 0.69 (0.11) 

CRAT 205843_x_at carnitine acetyltransferase 0.67 (0.11) 

DHRS2 206463_s_at dehydrogenase/reductase (SDR family) member 2 0.65 (0.11) 

AKR1C2 209699_x_at aldo-keto reductase family 1, member C2 0.63 (0.12) 

AKR1C2 211653_x_at aldo-keto reductase family 1, member C2  0.56 (0.12) 

HPGD 211548_s_at hydroxyprostaglandin dehydrogenase 15-(NAD) 0.62 (0.12) 

UGT2B28 211682_x_at UDP glycosyltransferase 2 family, polypeptide B28 0.60 (0.12) 

BUCS1 215432_at butyryl Coenzyme A synthetase 1 0.52 (0.12) 

ALDH3B2 204942_s_at aldehyde dehydrogenase 3 family, member B2 0.48 (0.12) 

ROPN1B 220425_x_at ropporin, rhophilin associated protein 1B 0.80 (0.10) 

EPHB3 1438_at EPH receptor B3 0.78 (0.10) 

BCL11A 219498_s_at B-cell CLL/lymphoma 11A (zinc finger protein) 0.78 (0.10) 

MFGE8 210605_s_at milk fat globule-EGF factor 8 protein 0.73 (0.11) 

TM4SF1 209387_s_at transmembrane 4 L six family member 1 0.72 (0.11) 

TM4SF1 209386_at transmembrane 4 L six family member 1 0.69 (0.11) 

TM4SF1 215034_s_at transmembrane 4 L six family member 1 0.68 (0.11) 

ANP32E 221505_at acidic (leucine-rich) nuclear phosphoprotein 32 family, member E 0.71 (0.11) 

S100A1 205334_at S100 calcium binding protein A1 0.70 (0.11) 

PDK1 206686_at pyruvate dehydrogenase kinase, isoenzyme 1 0.69 (0.11) 

ART3 210147_at ADP-ribosyltransferase 3 0.66 (0.11) 

TNFRSF21 218856_at tumor necrosis factor receptor superfamily, member 21 0.60 (0.12) 

SLC26A2 205097_at solute carrier family 26 (sulfate transporter), member 2 0.58 (0.12) 

TNPO3 214550_s_at transportin 3 0.58 (0.12) 

GAB2 203853_s_at GRB2-associated binding protein 2 0.56 (0.12) 

AK056707 212553_at KIAA0460 protein 0.53 (0.12) 

4 Discussion 

Our tool performs feature selection by searching for the best trade off between mean 
difference test and t-test. The search is guided by cross validated model performance. To 
make the search effective, it is crucial that the cross-validation is done in an unbiased manner. 
For instance: 
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1. For model tuning, the feature selection must be performed within each run of 
cross-validation. 

2. The cross-validation performance of the model tuning step cannot be used as an 
estimation of model performance. For estimating unbiased model performance, 
nested cross-validation must be performed. That is, the inner cross-validation for 
model tuning, the outer cross-validation for performance estimation. For stability, 
the inner cross-validation and outer cross-validation may need to be run multiple 
times. 

Considering the computation cost of proper cross validation, we use DLDA classifier as our 
modelling tool, which is a simple linear classifier that has no parameters to be tuned. It is 
been shown that DLDA performance very well compared to other more complicated 
classifiers [8]. We believe the best way to gain better performance is through improving 
performance of feature selection, rather than tuning modeling parameters of complex models. 
Complicated learning schemes can make proper cross-validation too computational expensive 
to run. 

Using the whole chemotherapy response data, we showed that our tool can effectively 
identify the most important biomarker for predicting chemotherapy response, i.e., the ER 
gene. We also showed that without grouping the patients into homogeneous subpopulations 
based on known clinical variable, it is hard to find gene signatures that have added clinical 
benefit over the clinical variable ER.  

By checking the gene expression pattern of a gene (HPGD) selected from the ER-negative 
patients, we identified a clinically homogeneous set of patients (ER-/PR-/HER2-) whose 
chemotherapeutic response can be reasonably predicted. A set of genes were identified from 
this subpopulation. Many of these genes are shown to have good predictive power 
individually based on blinded validation data.  
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